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NE:::ist:euce ogtqucdutuu {omluv » related to Hermite-
Birkhoff Xnurpoht;m is ;:;;;,_l;r a class of incidence matrices satisfying
the conditions of the Atkinson-Sharma Theorem. For the subclass of Hermite
matrices this analysis furnishes yet another proof of the existence of
Gaussian quadrature formulas with multiple nodes. :
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SIGNIFICANCE AND EXPLANATION

Methods for approximating the integral of a function, given the values of
the function and/or some of its derivatives at several points in the interval
of integration, are investigated. The integral is approximated by a
weighted sum of the given data--a guadrature formula.

It 15 shown that for a wide class of different data configurations, there
exist appropriate points of evaluation and weights such that the resulting
quadrature formula is exact for all polynomials of the maximal possible
deqree. The well-known Gaussian quadrature formulas represent the partic-

ular case in which only function values {and ro derivatives) are employed.
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ON THE EXISTENCE OF HERMITE-BIRKHOFF
QUADRATURE PORMULAS OF GAUSSIAN TYPE

Nira Dyn*

1 Introduction and Preliminaries
T™his paper studies the existence of quadrature formulas of Gaussian type

related to Hermite-Birkhoff interpolation problems. Given the m x n incidence

} = n~1
13 i=1" §=0
precisely N ones, N < n, we are interested in the existence of a quadrature

matrix E = (e with entries consisting of zeros and ones, having

formula of the fors:

p x)
(.1 ftaos | ay £7t) . axm <xconen <b ,
a ou-l

which is exact for .'!n_l ~the space of all polynomials of degree < n - 1.
Incidence matrices with N<n ones wvhich admit such quadrature formulas are

termed in (3] "matrices of Gaussian type.® It is proved in [3] that the guadrature
formula (1.1) can be exact for 1, only if n < N -k, where k is the minimal
number of ones which must be added to E to obtain a matrix without odd sequences
in rows corresponding to interior points of [a,b]. TwO classes of matrices of

Gaussian type, admitting quadrature formulas (1.1) exact for un with n = N - k,

-]’
are known: .

{a) The class of Hermite matrices (matrices consisting of sequences of ones
starting at column © ~Hermite sequences) with all the sequences corresponding to
points in (a,b) of odd order (2], (6].

(b) The class of incidence matrices derived from quasi-Hermite matrices with
Hermite sequences of length 2 in rows 2,...,m - 1, by changing the last one in
each of these sequences into zero [1l). (The definition of quasi-Hermite matrices is
given at the end of this section).

‘on sabbatical from Department of Mathematical Sciences, Tel-Aviv University, Israel.
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In the following we characterize a wide class of incidence matrices of

Gaussian type for which n = N - k, where Kk equals the number of Hermite Sequences
corresponding to points in (a,b). This class contains the classes (a), (b}, Our
analysis is based on the Atkinson-Sharma Thecrem [1) and on the existence of the
classical Gaussian quadrature formulas (termed also principal representations) for
Chebychev systems [8]. The idea of proof is in some respect an extension of the
approach of Markov [10] to the construction of the Gaussian Quadrature formulas (GQF)
in the classical sense, In this approach the GOF is derived by integration of the

Hermite interpolation polynomial:

X

Pax-y (£1X%) = xgx(mx;uammx-) + £ (xdp,, (RiX]
p.. €8 ' P )ut 8 80,0, r= 1,500,k 3 =0,1, i ®1,°0,K
*’ zk_l ‘J ' u j. . . . ’ . . ' l ’ .

with l'-iaf_x;<-u<a;<bl chosen so that

[bp“(::xﬂdt D i kWY eeey .
a
Although our method of proof does not yleld uniqueness of the guadrature (1.1) even
for matrices of class (a), for which uniqueness is known {2], [6], yet the proof of
existence is somewhat simpler than the proofs in [2], [6]. Moreover by the same
method it is possible to extend the uniqueness result to the case of quadrature
formulas related to quasi-Hermite matrices.
The results and proofs are stated for polynomials, but the extension to extended
Chebychev systems is straightforward. (See §13).
in Section 2 we prove the existence of gquadrature formulas of Gaussian type
related to a certain class of incidence matrices. Section 3 consiste of remarks on
some extentions and on certain interesting specific cases.
We conclude this section by introducing notations and citing some results from

the theory of Hermite-Birkhoff interpolation. Let n_m denote the class of




! incidence matrices E = (e‘)s“l. ja0 satisfying the following conditions:
.
n=~l = $-1 o
e G GO .m0 . 3 ey 2% » ®=1,2n -1 (Pélys conditions)
3=0 i=] b J=Q i=]
1.3 All the non-~Hermite sequences in rows 2,***.m -~ 1 are even.

(A sequence 18 a maximal string of ones in a row).
The well~-known theorem of Atkinson-Sharma {1] states that the interpolation
probles at  (E X} :

3}

(1.4} poix) = Sy v -U =1 , p¢ nn-l

has a4 unique solution for any X = {a < e il < b} and any data

n‘). c” = 1} (B is order-poised) if E satisfies (1.2) and {f E contains no
HQUNCR 8, L Tt T Y 1 with r odd, such that o ® 1 for

some v < i, u*k and formome v > i, uw £k

’ The interpolation problem (1.4) for X = {a < x < By € voh 4 g “ bl can be

1

extonded continuously to any X = {a < B SRy S0es SN % bl, by considering the

probles (1.4) for (E,X), where & = {a ¢ X <& < +e« <% <Db} consists of all the
distinet nodes of ¥, and E is obtained from £ by coalescing rows of E
corresponding to equal nodes of X, according to the rule [5], [4]:

¥Yor e st P o.,-l if and only if

: i

§ 1.5)

¥ ik

{ ] Je 33-x+1 forsome Ocrg}
( u_"’.‘vu

The Atkinson~Sharma theores implies that all AS matrices are order-poised. A
subslase of particular interest of the AS matrices are the quasi-Hermite matrices -
matrices satisfying (1.2) and containing only Hermite sequences in rows 2,ess,m = 1.

A quadrature formuls of the form (1.1), exact for “u-l' it termed hereafter

“Hermite-Birkhoff Gaussisn quadrature formula®™ (HB-GQF) if

!
]
i’
n=1
(1.6) Ne J fcu-n- ey
' 30 1 (4lx eta,m)

3=
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2. Existence of Hermite-Birkhoff Gaussian Quadrature Formulas
A key observation in the forthcoming analysis is the following direct result of
the Atkinson-Sharma Theorem (see alsc (9] p. 89):

Lemma 1: lLet E be an m x n incidence matrix satisfying:

(2.1) ®o"0 l<i<n
-l = n-l =

(2.2) f [c“:--r P8, N g I [o”-n-x
j=0 =1 3=0 i=1

for some positive integer r. If all sequences of E are even then for any
x'('i'1<'2“" < % < b} the subspace

2.3 Py lEX) = (plpen Pm

("’ =0 , .‘i.l'

n-1

is a Chebychev space of dimension r on [a,b].

Remark 1: For X = {a ¢ x < x, ¢+ <x <b} the space P (E,X) is defined by

: e

PLEX) where X = (a < x <« ss <X <D} consists of the distinct components of X,

1
and where £ is obtained from E by coelescing rows of E corresponding to equal

components of X as in (1.5).
If E satisfies the condition of Lemma 1 so does £, and therefore Py (EX)
is a Chebychev space of dimension r on {a,b], for all X in the = dimensional

symplex

(2.4 e (x| X={acx 5_---;5;&)..

1
Moreover Poll,X) depends continuously on X,
Similarly we have

Lesma 2: Let E be an mxn incidence matrix satisfying (2.1) and (2.2). 1If

all sequences of E in rows 2,+++,m - 1 are even, then for any x-(o-x’;
t’_‘_“'f_l._‘:l.-bl the subspace P, (E,X) is a Chebychev space of dimension

which depends continuously on X.

Ay —

T,
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Analogous results hold if all rows of E except the first (the last) consist of
even sequences only. ln‘ this case x, = a (n- = b) and the rest of the nodes vary
in [a,b] appropriately.

The main result of this work (s the content of the next theorem.

Theorem l: Let E ¢ Asm contain only even sequences, k of which are
Hermite sequences, k * 0, Let the matrix E* be derived from E Dby replacing the
last one in each Hermite sequence of E by zero. Then E* admits a HB-GOF with
nodes X* » {a < xp < x§ < ++r < x8 < Db}, for any positive measure which is supported on
mo.» than k  points in (a,b).

Proof: Let

.= jsxt=n
2.5)
c
L= ]

n‘-ux(j io“-l for all 0 <s <3} 4 { eI .

-1 it ux: ;

and let E= (5,07, ‘,‘:; be obtained from E by replacing the first and last ones

in each Hermite sequence of E by zero: & . = ‘h't =0, 4 ¢ x'. othe rwise iu - .11'
Since E ¢ Asm and has only even sequences, the matrix £ satisfies the conditions

-1
3=0 *43
is a Chebychev subspace of dimension 2k for any X « "

of lesma 1, and }:-l = n ~ k. Henoe by lesma 1 and Remark 1, votl.x)

Using the result about the existence of a Gaussian quadrature formula (lower
principal representation) for a Chebychev space (8], we conclude the existence of
mique 2 = {a ol ot 4 < b} and v >0, { = 1,+++,k, such that

b k
.7 Jpdo= jw pla) . per @
a i=1

for any positive measure 4¢ supported on more than k points of (a,b).
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In the following we construct a continuous mapping of the symplex Sk into e

k

itself. Let 1‘: be any continuous mapping from § into s" such that for

Y-(|<yl*""'yh~'b).x-{¥ is of the form:

{2.8) 's,"j Pl = 9 IR LS .“1 c;znta.- cg-<b ;
In case k = m (all rows of E contain Hermite sequences) 1: is the identity
mapping. For X ¢ & let a:x-z- (n<:1<--- <¢k<b)¢s‘ with Byott Ry

the points of the GQF (2.7). The mapping T ¥ c: { is a continuous mapping of St
into itself, and therefore by Brouwer fixed-point theorem (12)] there exists Y* ¢ s"
such that
TY*a e
Moreover, since for all ¥, T Y is an interior point of Ek, Y* =« {a <« y; < onr £ y'k < b},
and there fore x'-‘!:Y‘ is of the form X* = (n<.; < v <:;<b). ¥We conclude the

proof of the theorea by showing that E* admits an HB-GQF at the nodes X°.

Since E is order poised, for any e, = 1 there exists a unigque polynomial

i3

p“ satisfying » 8

o

— o -
2.9 o pull‘) - duC” v X, p“ € nn.l '
and any p ¢ lln.1 can be written as
(2.10) s = I pPapp

ou-l 4

Moreover since T Y* = ¥*, the points x* ,***,x* are the nodes of a GQF of
1, X

the form (2.7) for P _(E,X*). mow p, ¢ P (B,X) for & ¢ 1. and therefore
0 o

> k
(2.11) / dow [w* o Vet AL
.&n‘ ._ltplu‘ t. E

Integrating (2.10) and using (2.11), we obtain




O n i R it i =

;f b :
{ (2.12) [pao= [ a pu)(u‘) o e p(’)(:') v poedl
! & . w3 i ot i3 i n-1
. i3 i)
Wy,
with
b
(2.13) »“-/.pu 4 , of; =1 .

Corollary 1: In the HB-GQF (2.12), .13 >0 for i ¢« It' j ewn J < by

Proof: Por 14 « l‘. 3 even j < u let q“ be the polynomial solving

‘l
the following interpolation problem:

(s)

(2.14) qtj (I;) -0 , .v. -1 , vov¥ i
(
(2.1%) qi;)(le “=0 . e, =1 . s¥3y
{2.16) q‘(;,(::) g h
(2.17) gy, = 0

b
(=)
Then by (2.12) [q, d0= ] a_q. (x*) =a
% 43 .:..l va i3 v i)

To prove that a > 0 it is sufficient to show that q”;o.q”lo on

i3

the aupport of do. We first show that q“(:)vo. x ¢ (a,b) - {x} | ve 1.}, and

9, in (l;!\»(!') are even. Suppose to the contrary that
(u_+1)

either q‘jiu-o for £ « (a,b) ~ (l; | ve ‘x) or that qtj“ (x;)-o for

that the zeroe of

some Vv ¢ x‘. vy i. Then q“ is a nontrivial solution of a homogeneous interpolation

problem, corresponding to a matrix £ obtain from E by substituting ;13 -0,

;lu = 0, adding A row with 1 in the first colusn corresponding to the point a,
i

and either adding a4 row with 1 in its first colum corresponding to the point &,

i = 1. In either cases E ¢ AS__ ~- a contradiction. Thus
cuwl mxn
vanishes in (a,b), only at the points (x; j ve 1.}, and all these zeros are

or substituting e

A . ¢

9
i3
even by (2.14) - (2.16) and the structure of E. In view of (2.16) 95 >0,

while quto on the support of do since {n:lv«!') contains Xk points.

%




The same idea of proof can be extended to all the matrices in “un having
even Hermite sequences in rows corresponding to interior points of (a,b). We state
the result and sketch the proof for one such case:

Theorem 2: let E ¢ ”un contain k > 0 even Hermite sequences in rows
2,***,m - 1 and no odd Hermite sequence in these rows. Then E°®, derived from E
by replacing the last one in every Hermite sequence ir, rows 2,+°**.m - 1 by zero,
admits an HB-GQP with nodes X* = {a = o G, Tt < x2 = bl,
for any positive measure which i{s supported on more than k points of (a,b).

Proof; Define I, x:, b asin(2.5), 2.6), T = {4 [f e, ipl, m)

{h, € o2 « ‘u)' and denote by E the matrix obtained from E by substituting

1
‘m-o M lc!- ’ .“‘-o ‘ lc!. %

For l-(a-:l:xz:o--_(_u._lf_:--b) let Po(l.l) be as in lemma 2. By
construction of E, for all (:2,---.1") « ‘-2' rott.x) is a Chebychev space of
dimension 2k + %0 * %o We define a mapping T from lh into lk as follows:
For Y ¢ S let X = {a= By ST SR b}, with L LA L S0 defined as in (2.8).
MTY-!(S,‘ where !-(utt‘<x2<--~<lk<b)mthnlnudorpolnuot
the GQF (principal representation) for PQ(I.I). corresponding to the measure dc,
which {nvolves a (f e

o-l and b {f e = 1. Using the fixed point of I,

1 m0
¥*, we comstruct ';“"”:-1 by (2.8), and proceed as in the proof of Theorem I
to construct the HB-GQF corresponding to £* at the nodes
30-(...{¢‘;<-..<l:-b),

As in the case of Theorem 1 we hawe:
Corollary 2: let E* be defined as in Theorem 2, and let

b
3)
(2.18) pdo = p Y x) p e _
: ot TER o 0 N

be the corresponding MB-GQF. Then a,, >0 for lcl'. J ewven, 3 <y . MNorwower

a0 0 for 3 <y, (e, 50 for 3 <,

-8-




3. Extensions and Remarks

3.1 let E in Teorem 2 be a quasi-Hermite matrix with i 1, 4= 2,e0v,m -~ 1.

Then £ has non-2ero elements only in the first and last rows, ’:; (o) * e

-j) i

n~2(m~2), and for all x-(u-:x:---f_x--b)

ro(t.x)-rotl)- (plyenn_l ‘ p“)(a)-o . ou-l IS &
(3.1)

(4 4
P oM e0 , o =1 , 3>0)

iz a Cheblychev space of dimension d-zh-Z)OQloocm. Since the space

ro(i,x) is independent of x,,***,x__,, the points x3,+*,x3 , of Theorem 2 are

-1

the interior points of the GQF for rotl) involving a if e =1 and involving

10

b if ..o-l. Thus in this special case the derivation of the HBR-GQF for E*
does not involwe the construction of a fixed point of a mapping. In addition the

same arguments yield the uniqueness of the HB-GQF correspanding to E°.

3.2 A direct consequence of the simple relation between the HB-GQF constructed in
3.1 for the matrix E*, and a certain GQF corresponding to roﬂ). is the following
extremal property of this HB-GQF:

et £ be as in 3.1. Among all polynomials from

3

(3.2) Qn-lq!c;ian.q}_o.q(”h)-o.o 1,4 fb)-o.o -1}

i3 =)

with leading coefficient (-1)%, s = {‘;:; @44+ the one vhich has double roots at

xg,conxs  of 1.1 minimizes [ qloax.

> i a1
To see this observe that any q ¢ Qh with leading coefficient (-1)'. can

be written as 7 = Py = P wvhere s (-1)' X" 4 +++ satisfies

0.n pPlweo , o =1 . 330, p ) =0, g1 . 350,

and where p ¢ ro(h satisfies p <p on [a,b), pla) = p @) if e, =1,




i T

P®) »p () If o = 1. Since o} v ro(i) is a Chebychev space of dimension
d + 1, the extremal property of the GQF used in 3.1 yields the required result.
(For extremal properties of GQF (principal representations) consult (8]). The
results of 3.1 and 3.2 are the content of Theorem 4 in [11]. The proof of these
results as sketched here, seems to be simpler.

It should be noted that GQF with multiple nodes (NB~GQF admitted by Hermite

matrices) have a similar extremal property (7).

3.3 Theorems 1, I can e extended by the same method of analysis to the case of
extended Chabychev systems (u . ***,u ¢ ™ 2 a.b) is an extended Chebychev

system if any nontrivial “polynomial® f;. a u has at most n - 1 2eros count-

e Gk |
ing multiplicities). The Atkinson-Sharms Theores is valid also for extended
Chebychev aystems (5], but with the operators -‘-;- kel,**+.n~1, replaced by certain
dx

differential operators °1""‘°n-1 related to the extended Chebychev system. In
case of Hermite matrix E°, the resulting HB-GQF involves only evaluations of the

function and its derivatives of order at most n -~ 1. Otherwise the HB-GQF is of

the form:

(1)

0.4) I a .t e | o, ©0En
e EREr s | Py s
i3 i3
b i >u

whe re u;ox is the number of ones in the Hermite sequence in row 4 of E*,
(n:--‘l it 0:0-0).

1.4 The existence and uniqueness of the HP-GQF admitted by an Hermite matrix E°*,
in case of extended Chebychev systems, is proved in (2], [6]. Using the uniqueness
of GQF with sultiple nodes, we can prove the wniqueness of the HB-GQF related to a

quasi-Hermite matrix by a comstruction similar to 3.1.

-10-
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Indeed for E quasi-Hermite let

My be defined as in Theorem 2, and let ;

) (3.5 i‘oﬂ’.) = {pipce LY p‘“(c) = 0, 0” =1,3»0, p(n(b) -0, .nj =1, 3»>0} . .

-1
By lessa 2 #o(t) iz a Chebychev space of dimension n - f;-l ho: . o.’). Now

i =)
b w1
frass T Ta pPumrs T o Y
i3 i 13
.lj.l

] )
1 a i=2 j=0

@+ J a pu’(b)
. "] =
»)

for all p « !Ia_x if and only if s;.'“.x‘ are the interior nodes of the unigque

a1
S0P with multiple nodes for iom, which involves & if e, =1 and involves

b if .w - 1.

1.5 It is conjectured that for E* (n Theorem 1 with k = m (all rows contain

Hermite sequences) the corresponding EB-GOF is unigque, as in the case of Hermite i
matrices (2], [6]. Uniquencss cannot be expected in the more general case due to

the arbitrariness in the construction of the mapping { of (2.8).

Acknowledgement: The author wishes to thank Professor §. D. Riemenschneider for a

valuable discussion on the present general setting of the results in this work.
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